ASPHALT DESIGN METHOD FOR SA

Sabita – SAT Workshop
18 November
Pretoria
Programme

1. *Introduction*
 P Myburgh

2. *Mix Type & Selection*
 B Verhaeghe

3. *Binder & Aggregate Selection*
 H Marais

4. *Mix Design & link with Pavement Design*
 J Anochie-Boateng

5. *Quality Management*
 J Grobler
Introduction - content

- Initiation
- Project framework
- Objectives
- Scope of method
- Features
- Process of implementation
Initiation

Drivers
- SARDM
- Limited validation of technology proposed in IGDHMA (2001)
- Innovation in asphalt production (WMA, RA and EME)
- International and local advances in technology.
- The increased volumes of heavy vehicles on SA roads

Framework
- Developed in Dec 2009
- Informed by SARDM
- Inform COTO specification

Research contract Sabita – CSIR 2010
- Essentially consisting of 3 phases
Project framework

- Phase I: Establishing project management structure (Sabita TDFP)
- Phase II: Evaluation of current design methods.
 Literature study to assess gaps
 Consultation with industry experts
- Phase III: Experimental work and manual development
Objectives

- *Manual* will replace existing *guidelines* for the design of asphalt mixes in South Africa
- Move from *empirical* -based to – *performance related* design of asphalt
- Methods in line with international best practice
- Enable the formulation of *national specifications*
Document scope

- Mix type selection
- Binder selection
- Aggregate section
- Mix design procedure
- *Link with pavement design*
- Quality assurance/control
Special features of the method

- Mix type selection
- Multi-level design approach (risk associated)
- Resistance to permanent deformation
- Link with pavement design
- Quality assurance
Mix type selection

• Classification based on *aggregate packing*
 • Instead of gradings
 • Typifying mixes in terms of grading type does nothing for indicating how they carry loads and distribute stresses
• Mix types based on *skeleton structure* (as per SAPEM)
 • Stone skeleton
 • Sand skeleton
• Gradings a secondary property
 • Suited for *quality control*
 • No more generic types e.g. COLTO fine/coarse etc.
 • Suggested control points for sand skeleton mixes (most common)
 • MPS – layer thickness
 • 2mm & 75 μm sieves
• Bailey method recommended - optimise mix composition (Franckken, Olard)
Sand and stone skeletons

Sand skeleton mix

Stone skeleton mix
Classification of mix types

- Stone skeleton
 - Open graded
 - SMA
 - Coarse graded
 - Ultra thin

- Sand skeleton
 - Gap graded
 - Semi-gap graded
 - Fine continuous
Multi-level approach

Level I:
Low risk of structural damage
≤ 3 million ESALS
- Recommended control points for aggregate grading selection
- Volumetric design with mechanical properties testing

Level II:
Medium to high risk of structural damage
3 - 30 million ESALS
- Level I volumetric design
- Performance related laboratory testing to select optimum mix design

Level III:
High risk of structural damage
> 30 million ESALS
- Level I volumetric design, and full scale laboratory testing
- Establishes full scale laboratory data for advanced pavement design and analysis
Permanent deformation - Flow number

- Level II and III design
- Compacted asphalt specimens subjected to a controlled sinusoidal compressive loading.
- Confining stress option
- Permanent axial strain is measured as a function of the number of load cycles.
- Flow number - number of load cycles corresponding to the min permanent strain rate
- A higher flow number indicates a more rut-resistant mix.
Flow number, F_n
Avoiding pitfalls of the past

• COLTO gradings
 - Striving for max denseness at the expense of adequate binder films (due to change in general aggregate shape since development of these gradings)
 - Neither sand, nor stone skeletons (packed with interceptors)
 - Engineering properties not optimised
 - Studies in SA showed that optimum mixtures did not comply with COLTO.

• Marshall properties
 - Adherence to compliance limits/ratios with little if any link to performance
 - Original purpose to avoid mixes that were over-rich in binder

• Scope for inexperienced designers
 - Holding fast onto the security blankets – conflict with best practice
 - Manufacturers hamstrung to offer optimum designs
 - Leave design to those whose well being depends on good quality
Rut Challenge – Gautrans/Sabita 2008

HMA mix grading

- **After RTFOT Softening Point (°C)**
 - **Design**
 - **Much Field Mix Results**
 - **Actual HMA - truck**
 - **Actual Core -1 month**
 - **Actual Core -1 month**
Rut resistance

• Tells us two things:
 • Aggregate packing has a major role on performance
 • Binder grade perhaps less so
Grading control points

- Grading is influenced by choices:
 - Layer thickness – max aggregate size
 - Packing type – sand or stone skeleton

Figure 4.1: Grading control points plotted on 0.45 power chart for MPS = 14 mm
Link with pavement design (under construction)

- SARDM requires response & damage models
 - Dynamic modulus
 - Witczak prediction
 - Hirsch prediction
 - Laboratory tests
 - Asphalt damage models
 - Permanent deformation
 - Fatigue fracture
Special mixes

- Cold mixes – Sabita Man’s 14, 21 and TG2
- Porous asphalt – Sabita Man 17
- Light traffic (residential areas) – Sabita Man 27
- WMA – Sabita Man 32
- EME – Sabita Man 33
- Mixes with RA – TRH 21
- SMA – Appendix of the design manual
Notes on special mixes - SMA

• SMA - essentially a binary system (stone skeleton type)
 • *self-supporting* stone structure (>2 mm) throughout layer
 • *partially* filled with binder-rich mastic.

• Stone skeleton is kept in place by the adhesion and cohesion of the mastic (i.e. the binder and the mineral aggregate finer than 2mm).

• The stone skeleton should *not be dilated* by the mastic
 • VCA_{mix} i.e. the volume in between the coarse aggregate particles, comprising filler, fine aggregate, air, binder, and (where used) fibre should be less than the VCA of the dry aggregate

• Filler-bitumen system is overfilled

• Gradings do not guarantee these requirements
Notes on special mixes - EME

• Components
 • Hard, unmodified bitumen (10/20 and 15/25 penetration grades)
 • Blended at high concentrations (up to 6.5% m/m)
 • Good quality, fully crushed aggregate
 • Low air voids content

• Key performance characteristics are:
 • High elastic stiffness
 • High resistance to permanent deformation and fatigue failure
 • Good moisture resistance and good workability
 • Superior load spreading ability

• Grading curves
 • point of departure for the mix design process
 • not be used to impose a restriction on the grading
QA approach

- Level I - Volumetric design
 - A mix design is usually tendered for each contract and client or consultant approval is obtained for the mix design.
- Level II and Level III - Performance-related designs.
 - New approach
 - Relatively lengthy laboratory testing procedures
 - Repeat of such designs on a contractual basis impractical
 - Proposed - suppliers would have a number of performance-related mixes “certified” for specific applications and performance expectations
 - Valid for two years – provided no significant changes to the raw materials
 - Where a performance-related mix is not certified ‘certification-type’ testing procedure precedes the quality control process, so the same quality control approach is still followed.
QA processes

<table>
<thead>
<tr>
<th>Level I</th>
<th>Levels II, III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract based mix design
• Aggregate properties, grading, binder content, VIM, MVD, VMA, VFB, BD, ITS, dynamic creep, durability and permeability</td>
<td>Certified mixes (or purpose designed mixes)
• Aggregate properties, grading, dynamic modulus, fatigue, permanent deformation, workability, durability, binder content, binder MVD and VIM</td>
</tr>
<tr>
<td>Plant mix and trial section
• Binder content, grading, VIM, MVD, VMA, VFB, compaction density</td>
<td>Trial section
• Grading, binder content and VIM/field density</td>
</tr>
<tr>
<td>Field/Site
• Binder content, grading, VIM, compaction density, layer thickness
• Frequency of sampling and acceptance limits are defined in the relevant specifications</td>
<td>Field/Site
• Grading, binder content and VIM/field density
• Paving – QC: compaction, temperature control and limiting segregation</td>
</tr>
</tbody>
</table>
Implementation (Interactive process)

- Asphalt mix design workshop Midrand Feb 2012 – affirmed the proposed project
- Interaction with RPF (May 2011, May 2013,)
- Sabita TDFP (industry, consultants, research, clients) Review May 2014
- SAT – Sabita Workshop 18 November 2014
- Final review by Sabita TDFP
- Publication
Notes

- Introduction of the PG specifications - requires changes
- Terms such as AE-1, AP-1 will ultimately go
- COLTO type gradings are not a requirement
- *Expertise resides with producers who should produce (and certify) designs for a variety of applications*